A planar integral self-affine tile with Cantor set intersections with its neighbors.
Let be a standard probability space. We say that a sub-σ-algebra of decomposes μ in an ergodic way if any regular conditional probability with respect to andμ satisfies, for μ-almost every x∈X, . In this case the equality , gives us an integral decomposition in “-ergodic” components. For any sub-σ-algebra of , we denote by the smallest sub-σ-algebra of containing and the collection of all setsAin satisfyingμ(A)=0. We say that isμ-complete if . Let be a non-empty family...
1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) , where is a sequence of positive integers satisfying d₁(x) ≥ 2 and for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. . We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and to denote the Hausdorff...
We show that a σ-algebra 𝔹 carries a strictly positive continuous submeasure if and only if 𝔹 is weakly distributive and it satisfies the σ-finite chain condition of Horn and Tarski.
A topological space Y is said to have (AEEP) if the following condition is satisfied: Whenever (X,) is a measurable space and f,g: X → Y are two measurable functions, then the set Δ(f,g) = x ∈ X: f(x) = g(x) is a member of . It is shown that a metrizable space Y has (AEEP) iff the cardinality of Y is not greater than .
In this paper, we define a -integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure is compatible with its topology in the sense that every open set is -measurable. We prove that the -integral is equivalent to -integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true.
This note contains a proof of the existence of a one-to-one function of onto itself with the following properties: is a rational-linear automorphism of , and the graph of is a non-measurable subset of the plane.
We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if is a set with small anisotropic isoperimetric deficit, then is “close” to the Wulff shape set.
An exact Radon-Nikodym derivative is obtained for a pair (I,J) of positive linear functionals, with J absolutely continuous with respect to I, using a notion of exhaustion of I on elements of a function algebra lattice.
This paper is just a first approach to the idea that the membership function μP of a fuzzy set labelled P is, basically, a measure on the set of linguistic expressions x is P for each x in the corresponding universe of discourse X. Estimating that the meaning of P (relatively to X) is nothing else than the use of P on X, these measures seem to be reached by generalizing to a preordered set the concept of Fuzzy Measure, introduced by M. Sugeno, when the preorder translates the primary use of the...