The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 533

Showing per page

A probabilistic ergodic decomposition result

Albert Raugi (2009)

Annales de l'I.H.P. Probabilités et statistiques

Let ( X , 𝔛 , μ ) be a standard probability space. We say that a sub-σ-algebra 𝔅 of 𝔛 decomposes μ in an ergodic way if any regular conditional probability 𝔅 P with respect to 𝔅 andμ satisfies, for μ-almost every x∈X, B 𝔅 , 𝔅 P ( x , B ) { 0 , 1 } . In this case the equality μ ( · ) = X 𝔅 P ( x , · ) μ ( d x ) , gives us an integral decomposition in “ 𝔅 -ergodic” components. For any sub-σ-algebra 𝔅 of 𝔛 , we denote by 𝔅 ¯ the smallest sub-σ-algebra of 𝔛 containing 𝔅 and the collection of all setsAin 𝔛 satisfyingμ(A)=0. We say that 𝔅 isμ-complete if 𝔅 = 𝔅 ¯ . Let { 𝔅 i i I } be a non-empty family...

A problem of Galambos on Engel expansions

Jun Wu (2000)

Acta Arithmetica

1. Introduction. Given x in (0,1], let x = [d₁(x),d₂(x),...] denote the Engel expansion of x, that is, (1) x = 1 / d ( x ) + 1 / ( d ( x ) d ( x ) ) + . . . + 1 / ( d ( x ) d ( x ) . . . d n ( x ) ) + . . . , where d j ( x ) , j 1 is a sequence of positive integers satisfying d₁(x) ≥ 2 and d j + 1 ( x ) d j ( x ) for j ≥ 1. (See [3].) In [3], János Galambos proved that for almost all x ∈ (0,1], (2) l i m n d n 1 / n ( x ) = e . He conjectured ([3], P132) that the Hausdorff dimension of the set where (2) fails is one. In this paper, we prove this conjecture: Theorem. d i m H x ( 0 , 1 ] : ( 2 ) f a i l s = 1 . We use L¹ to denote the one-dimensional Lebesgue measure on (0,1] and d i m H to denote the Hausdorff...

A problem with almost everywhere equality

Piotr Niemiec (2012)

Annales Polonici Mathematici

A topological space Y is said to have (AEEP) if the following condition is satisfied: Whenever (X,) is a measurable space and f,g: X → Y are two measurable functions, then the set Δ(f,g) = x ∈ X: f(x) = g(x) is a member of . It is shown that a metrizable space Y has (AEEP) iff the cardinality of Y is not greater than 2 .

A PU-integral on an abstract metric space

Giuseppa Riccobono (1997)

Mathematica Bohemica

In this paper, we define a -integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure μ is compatible with its topology in the sense that every open set is μ -measurable. We prove that the -integral is equivalent to μ -integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true.

A Q -linear automorphism of the reals with non-measurable graph

Stephen Scheinberg (2019)

Commentationes Mathematicae Universitatis Carolinae

This note contains a proof of the existence of a one-to-one function Θ of onto itself with the following properties: Θ is a rational-linear automorphism of , and the graph of Θ is a non-measurable subset of the plane.

A quantitative version of the isoperimetric inequality : the anisotropic case

Luca Esposito, Nicola Fusco, Cristina Trombetti (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if E is a set with small anisotropic isoperimetric deficit, then E is “close” to the Wulff shape set.

A Radon-Nikodym derivative for positive linear functionals

E. de Amo, M. Díaz Carrillo (2009)

Studia Mathematica

An exact Radon-Nikodym derivative is obtained for a pair (I,J) of positive linear functionals, with J absolutely continuous with respect to I, using a notion of exhaustion of I on elements of a function algebra lattice.

A reflection on what is a membership function.

Enric Trillas, Claudi Alsina (1999)

Mathware and Soft Computing

This paper is just a first approach to the idea that the membership function μP of a fuzzy set labelled P is, basically, a measure on the set of linguistic expressions x is P for each x in the corresponding universe of discourse X. Estimating that the meaning of P (relatively to X) is nothing else than the use of P on X, these measures seem to be reached by generalizing to a preordered set the concept of Fuzzy Measure, introduced by M. Sugeno, when the preorder translates the primary use of the...

Currently displaying 221 – 240 of 533