Statistical periodicity of deterministic systems
Let H be a separable real Hilbert space and let E be a real Banach space. In this paper we construct a stochastic integral for certain operator-valued functions Φ: (0,T) → ℒ(H,E) with respect to a cylindrical Wiener process . The construction of the integral is given by a series expansion in terms of the stochastic integrals for certain E-valued functions. As a substitute for the Itô isometry we show that the square expectation of the integral equals the radonifying norm of an operator which is...
It is shown that if A ⊂ ℝ has the same constant shade with respect to all Banach measures, then the same is true of any similarity transformation of A and the shade is not changed by the transformation. On the other hand, if A ⊂ ℝ has constant μ-shade with respect to some fixed Banach measure μ, then the same need not be true of a similarity transformation of A with respect to μ. But even if it is, the μ-shade might be changed by the transformation. To prove such a μ exists, a Hamel basis with some...
Let be a completely regular Hausdorff space, the space of all scalar-valued bounded continuous functions on with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally -convex.
A class of strictly ergodic Toeplitz flows with positive entropies and trivial topological centralizers is presented.
In the moduli space of degree rational maps, the bifurcation locus is the support of a closed positive current which is called the bifurcation current. This current gives rise to a measure whose support is the seat of strong bifurcations. Our main result says that has maximal Hausdorff dimension . As a consequence, the set of degree rational maps having distinct neutral cycles is dense in a set of full Hausdorff dimension.
Consider a semigroup action on a set. We derive conditions, in terms of the induced action of the semigroup on {0,1}-valued probability charges, which ensure that all invariant probability charges are strongly continuous.