Displaying 681 – 700 of 3919

Showing per page

Compactness and convergence of set-valued measures

Kenny Koffi Siggini (2009)

Colloquium Mathematicae

We prove criteria for relative compactness in the space of set-valued measures whose values are compact convex sets in a Banach space, and we generalize to set-valued measures the famous theorem of Dieudonné on convergence of real non-negative regular measures.

Compactness of the integration operator associated with a vector measure

S. Okada, W. J. Ricker, L. Rodríguez-Piazza (2002)

Studia Mathematica

A characterization is given of those Banach-space-valued vector measures m with finite variation whose associated integration operator Iₘ: f ↦ ∫fdm is compact as a linear map from L¹(m) into the Banach space. Moreover, in every infinite-dimensional Banach space there exist nontrivial vector measures m (with finite variation) such that Iₘ is compact, and other m (still with finite variation) such that Iₘ is not compact. If m has infinite variation, then Iₘ is never compact.

Currently displaying 681 – 700 of 3919