Ergodic measures for non-abelian compact group extensions
Ergodic group extensions of a dynamical system with discrete spectrum are considered. The elements of the centralizer of such a system are described. The main result says that each invariant sub-σ-algebra is determined by a compact subgroup in the centralizer of a normal natural factor.
We consider skew products preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and , i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T. We apply these...
We consider the skew product transformation T(x,y)= (f(x), ) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary drilling...
We construct a natural invariant measure concentrated on the set of square-free numbers, and invariant under the shift. We prove that the corresponding dynamical system is isomorphic to a translation on a compact, Abelian group. This implies that this system is not weakly mixing and has zero measure-theoretical entropy.
The aim of this short note is to present in terse style the meaning and consequences of the "filling scheme" approach for a probability measure preserving transformation. A cohomological equation encapsulates the argument. We complete and simplify Woś' study (1986) of the reversibility of the ergodic limits when integrability is not assumed. We give short and unified proofs of well known results about the behaviour of ergodic averages, like Kesten's lemma (1975). The strikingly simple proof of the...
Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in are considered. Techniques used here are inspired by [3].
We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the -topology.
Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in . For p = 1 we find that the maximal ergodic...