Displaying 1501 – 1520 of 3919

Showing per page

Interpolation of quasicontinuous functions

Joan Cerdà, Joaquim Martín, Pilar Silvestre (2011)

Banach Center Publications

If C is a capacity on a measurable space, we prove that the restriction of the K-functional K ( t , f ; L p ( C ) , L ( C ) ) to quasicontinuous functions f ∈ QC is equivalent to K ( t , f ; L p ( C ) Q C , L ( C ) Q C ) . We apply this result to identify the interpolation space ( L p , q ( C ) Q C , L p , q ( C ) Q C ) θ , q .

Invariance of Poisson measures under random transformations

Nicolas Privault (2012)

Annales de l'I.H.P. Probabilités et statistiques

We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples...

Invariant densities for C¹ maps

Anthony Quas (1996)

Studia Mathematica

We consider the set of C 1 expanding maps of the circle which have a unique absolutely continuous invariant probability measure whose density is unbounded, and show that this set is dense in the space of C 1 expanding maps with the C 1 topology. This is in contrast with results for C 2 or C 1 + ε maps, where the invariant densities can be shown to be continuous.

Invariant densities for random β -expansions

Karma Dajani, Martijn de Vries (2007)

Journal of the European Mathematical Society

Let β > 1 be a non-integer. We consider expansions of the form i = 1 d i / β i , where the digits ( d i ) i 1 are generated by means of a Borel map K β defined on { 0 , 1 } × [ 0 , β ( β 1 ) ] . We show existence and uniqueness of a K β -invariant probability measure, absolutely continuous with respect to m p λ , where m p is the Bernoulli measure on { 0 , 1 } with parameter p ( 0 < p < 1 ) and λ is the normalized Lebesgue measure on [ 0 , β ( β 1 ) ] . Furthermore, this measure is of the form m p μ β , p , where μ β , p is equivalent to λ . We prove that the measure of maximal entropy and m p λ are mutually singular. In...

Invariant measures and long-time behavior for the Benjamin-Ono equation

Yu Deng, Nikolay Tzvetkov, Nicola Visciglia (2014)

Journées Équations aux dérivées partielles

We summarize the main ideas in a series of papers ([20], [21], [22], [5]) devoted to the construction of invariant measures and to the long-time behavior of solutions of the periodic Benjamin-Ono equation.

Currently displaying 1501 – 1520 of 3919