Displaying 1621 – 1640 of 3924

Showing per page

Less than 2 ω many translates of a compact nullset may cover the real line

Márton Elekes, Juris Steprāns (2004)

Fundamenta Mathematicae

We answer a question of Darji and Keleti by proving that there exists a compact set C₀ ⊂ ℝ of measure zero such that for every perfect set P ⊂ ℝ there exists x ∈ ℝ such that (C₀+x) ∩ P is uncountable. Using this C₀ we answer a question of Gruenhage by showing that it is consistent with ZFC (as it follows e.g. from c o f ( ) < 2 ω ) that less than 2 ω many translates of a compact set of measure zero can cover ℝ.

Limiting curlicue measures for theta sums

Francesco Cellarosi (2011)

Annales de l'I.H.P. Probabilités et statistiques

We consider the ensemble of curves {γα, N: α∈(0, 1], N∈ℕ} obtained by linearly interpolating the values of the normalized theta sum N−1/2∑n=0N'−1exp(πin2α), 0≤N'&lt;N. We prove the existence of limiting finite-dimensional distributions for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J.97 (1999) 127–153] and Jurkat and van Horne [Duke...

Limits of inverse systems of measures

J. D. Mallory, Maurice Sion (1971)

Annales de l'institut Fourier

In this paper the problem of the existence of an inverse (or projective) limit measure μ ' of an inverse system of measure spaces ( X i , μ i ) is approached by obtaining first a measure μ ˜ on the whole product space i I X i .The measure μ ˜ will have many of the properties of a limit measure provided only that the measures μ i possess mild regularity properties.It is shown that μ ' can only exist when μ ˜ is itself a “limit” measure in a more general sense, and that μ ' must then be the restriction of μ ˜ to the projective limit...

Limsup random fractals.

Khoshnevisan, Davar, Peres, Yuval, Xiao, Yimin (2000)

Electronic Journal of Probability [electronic only]

Currently displaying 1621 – 1640 of 3924