The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Marczewski-Burstin Representations of Boolean Algebras Isomorphic to a Power Set

Artur Bartoszewicz (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

The paper contains some sufficient conditions for Marczewski-Burstin representability of an algebra 𝓐 of sets which is isomorphic to 𝓟(X) for some X. We characterize those algebras of sets which are inner MB-representable and isomorphic to a power set. We consider connections between inner MB-representability and hull property of an algebra isomorphic to 𝓟 (X) and completeness of an associated quotient algebra. An example of an infinite universally MB-representable algebra is given.

Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions

Jack Brown, Hussain Elalaoui-Talibi (1999)

Colloquium Mathematicae

ℒ denotes the Lebesgue measurable subsets of ℝ and 0 denotes the sets of Lebesgue measure 0. In 1914 Burstin showed that a set M ⊆ ℝ belongs to ℒ if and only if every perfect P ∈ ℒ$ℒ0 h a s a p e r f e c t s u b s e t Q $ 0 which is a subset of or misses M (a similar statement omitting “is a subset of or” characterizes 0 ). In 1935, Marczewski used similar language to define the σ-algebra (s) which we now call the “Marczewski measurable sets” and the σ-ideal ( s 0 ) which we call the “Marczewski null sets”. M ∈ (s) if every perfect set P has...

Measurable cardinals and category bases

Andrzej Szymański (1991)

Commentationes Mathematicae Universitatis Carolinae

We show that the existence of a non-trivial category base on a set of regular cardinality with each subset being Baire is equiconsistent to the existence of a measurable cardinal.

Measure-theoretic unfriendly colorings

Clinton T. Conley (2014)

Fundamenta Mathematicae

We consider the problem of finding a measurable unfriendly partition of the vertex set of a locally finite Borel graph on standard probability space. After isolating a sufficient condition for the existence of such a partition, we show how it settles the dynamical analog of the problem (up to weak equivalence) for graphs induced by free, measure-preserving actions of groups with designated finite generating set. As a corollary, we obtain the existence of translation-invariant random unfriendly colorings...

Currently displaying 1 – 20 of 22

Page 1 Next