The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce two notions of tightness for a set of measurable functions - the finite-tightness and the Jordan finite-tightness with the aim to extend certain compactness results (as biting lemma or Saadoune-Valadier’s theorem of stable compactness) to the unbounded case. These compactness conditions highlight their utility when we look for some alternatives to Rellich-Kondrachov theorem or relaxed lower semicontinuity of multiple integrals. Finite-tightness locates the great growths of a set of...
Currently displaying 1 –
4 of
4