The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 165

Showing per page

An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid

Martin Sikora (2010)

Archivum Mathematicum

The Dirac equation for spinor-valued fields f on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet H + of the hyperboloid. In particular, we derive an integral formula expressing the value of f in a chosen point p as an integral over a compact cycle given by the intersection of the null cone with H + in the Minkowski space 𝕄 .

Angular limits of the integrals of the Cauchy type

Josef Král, Dagmar Medková (1997)

Czechoslovak Mathematical Journal

Integrals of the Cauchy type extended over the boundary A of a general compact set A in the complex plane are investigated. Necessary and sufficient conditions on A are established guaranteeing the existence of angular limits of these integrals at a fixed z A for all densities satisfying a Hölder-type condition at z .

Approximations by the Cauchy-type integrals with piecewise linear densities

Jaroslav Drobek (2012)

Applications of Mathematics

The paper is a contribution to the complex variable boundary element method, shortly CVBEM. It is focused on Jordan regions having piecewise regular boundaries without cusps. Dini continuous densities whose modulus of continuity ω ( · ) satisfies lim sup s 0 ω ( s ) ln 1 s = 0 are considered on these boundaries. Functions satisfying the Hölder condition of order α , 0 < α 1 , belong to them. The statement that any Cauchy-type integral with such a density can be uniformly approximated by a Cauchy-type integral whose density is a piecewise...

Calderón's problem for Lipschitz classes and the dimension of quasicircles.

Kari Astala (1988)

Revista Matemática Iberoamericana

In the last years the mapping properties of the Cauchy integralCΓf(z) = 1/(2πi) ∫Γ [f(ξ) / ξ - z] dξhave been widely studied. The most important question in this area was Calderón's problem, to determine those rectifiable Jordan curves Γ for which CΓ defines a bounded operator on L2(Γ). The question was solved by Guy David [Da] who proved that CΓ is bounded on L2(Γ) (or on Lp(Γ), 1 &lt; p &lt; ∞) if and only if Γ is regular, i.e.,H1(Γ ∩ B(z0,R) ≤ CRfor every z0 ∈ C, R &gt; 0 and for...

Currently displaying 21 – 40 of 165