Displaying 61 – 80 of 198

Showing per page

A new setting for potential theory. I

Kai Lai Chung, K. Murali Rao (1980)

Annales de l'institut Fourier

We consider a transient Hunt process in which the potential density u satisfies the conditions: (a) for each x , u ( x , y ) - 1 is finite continuous in y ; (b) u ( x , y ) = + iff x = y . In earlier papers Chung established an equilibrium principle, and Rao obtained a Riesz of decomposition for excessive functions. We now begin a deeper study under these conditions, including the uniqueness of the decomposition and Hunt’s hypothesis (B).

A nonasymptotic theorem for unnormalized Feynman–Kac particle models

F. Cérou, P. Del Moral, A. Guyader (2011)

Annales de l'I.H.P. Probabilités et statistiques

We present a nonasymptotic theorem for interacting particle approximations of unnormalized Feynman–Kac models. We provide an original stochastic analysis-based on Feynman–Kac semigroup techniques combined with recently developed coalescent tree-based functional representations of particle block distributions. We present some regularity conditions under which the -relative error of these weighted particle measures grows linearly with respect to the time horizon yielding what seems to be the first...

A note on Rosay's paper

Armen Edigarian (2003)

Annales Polonici Mathematici

We give a simplified proof of J. P. Rosay's result on plurisubharmonicity of the envelope of the Poisson functional [10].

A note on the density of the parabolic area integral.

Ileana Iribarren (2001)

Collectanea Mathematica

The density of the area integral for parabolic functions is defined in analogy with the case of harmonic functions. We prove its equivalence with the local time of the associated martingale. Using probabilistic methods, we show its equivalence in L p -norm with the parabolic area function for p>1.

A note on the parabolic variation

Miroslav Dont (2000)

Mathematica Bohemica

A condition for solvability of an integral equation which is connected with the first boundary value problem for the heat equation is investigated. It is shown that if this condition is fulfilled then the boundary considered is 1 2 -Holder. Further, some simple concrete examples are examined.

A note on the Rellich formula in Lipschitz domains.

Alano Ancona (1998)

Publicacions Matemàtiques

Let L be a symmetric second order uniformly elliptic operator in divergence form acting in a bounded Lipschitz domain ­Ω of RN and having Lipschitz coefficients in Ω­. It is shown that the Rellich formula with respect to Ω­ and L extends to all functions in the domain D = {u ∈ H01(Ω­); L(u) ∈ L2(­Ω)} of L. This answers a question of A. Chaïra and G. Lebeau.

A numerical solution of the Dirichlet problem on some special doubly connected regions

Miroslav Dont, Eva Dontová (1998)

Applications of Mathematics

The aim of this paper is to give a convergence proof of a numerical method for the Dirichlet problem on doubly connected plane regions using the method of reflection across the exterior boundary curve (which is analytic) combined with integral equations extended over the interior boundary curve (which may be irregular with infinitely many angular points).

Currently displaying 61 – 80 of 198