The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 841 –
860 of
1784
The relation between the Jacobian and the orders of a linear invariant family of locally univalent harmonic mapping in the plane is studied. The new order (called the strong order) of a linear invariant family is defined and the relations between order and strong order are established.
This note verifies a conjecture of Král, that a continuously differentiable function, which is subharmonic outside its critical set, is subharmonic everywhere.
The Hardy inequality with holds for if is an open set with a sufficiently smooth boundary and if . P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for .
The aim of this work is to answer positively a more general question than the following which is due to T. Sheil-Small: Does the harmonic extension in the open unit disc of a mapping f from the unit circle into itself of the form f(eit) = eiϕ(t), 0 ≤ t ≤ 2π, where ϕ is a continuously non-decreasing function that satisfies ϕ(2π)−ϕ(0) = 2Nπ, assume every value finitely many times in the disc?
In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk D, if F(D) is a convex domain, then the inequality |G(z2)− G(z1)| < |H(z2) − H(z1)| holds for all distinct points z1, z2∈ D. Here H and G are holomorphic mappings in D determined by F = H + Ḡ, up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in ℂ and improve it provided F...
2000 Mathematics Subject Classification: Primary 26A33; Secondary
47G20, 31B05We study a singular value problem and the boundary Harnack principle
for the fractional Laplacian on the exterior of the unit ball.
Currently displaying 841 –
860 of
1784