Displaying 621 – 640 of 5576

Showing per page

Banach space properties of strongly tight uniform algebras

Scott Saccone (1995)

Studia Mathematica

We use the work of J. Bourgain to show that some uniform algebras of analytic functions have certain Banach space properties. If X is a Banach space, we say X is strongif X and X* have the Dunford-Pettis property, X has the Pełczyński property, and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and the polydisk-algebras are strong Banach spaces. Using Bourgain’s methods, Cima and Timoney have shown that if K is a compact planar set and A is R(K) or A(K), then A and...

Behavior of holomorphic functions in complex tangential directions in a domain of finite type in Cn.

Sandrine Grellier (1992)

Publicacions Matemàtiques

Let Ω be a domain in Cn. It is known that a holomorphic function on Ω behaves better in complex tangential directions. When Ω is of finite type, the best possible improvement is quantified at each point by the distance to the boundary in the complex tangential directions (see the papers on the geometry of finite type domains of Catlin, Nagel-Stein and Wainger for precise definition). We show that this improvement is characteristic: for a holomorphic function, a regularity in complex tangential directions...

Berezin and Berezin-Toeplitz quantizations for general function spaces.

Miroslav Englis (2006)

Revista Matemática Complutense

The standard Berezin and Berezin-Toeplitz quantizations on a Kähler manifold are based on operator symbols and on Toeplitz operators, respectively, on weighted L2-spaces of holomorphic functions (weighted Bergman spaces). In both cases, the construction basically uses only the fact that these spaces have a reproducing kernel. We explore the possibilities of using other function spaces with reproducing kernels instead, such as L2-spaces of harmonic functions, Sobolev spaces, Sobolev spaces of holomorphic...

Currently displaying 621 – 640 of 5576