A balanced proper modification of P3.
We derive conditions under which a holomorphic mapping of a taut Riemann surface must be an automorphism. This is an analogue involving invariant distances of a result of H. Cartan. Using similar methods we prove an existence result for 1-dimensional holomorphic retracts in a taut complex manifold.
In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced -tensor on the tangent bundle using these structures and Liouville -form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.
We show a relation between the Kobayashi pseudodistance of a holomorphic fiber bundle and the Kobayashi pseudodistance of its base. Moreover, we prove that a holomorphic fiber bundle is taut iff both the fiber and the base are taut.