A Barth-Type Theorem for Branched Coverings of Projective Space.
Let X, Y be complex affine varieties and f:X → Y a regular mapping. We prove that if dim X ≥ 2 and f is closed in the Zariski topology then f is proper in the classical topology.
Some properties of the functions of the form in ℝⁿ, n ≥ 2, where each is a harmonic function defined outside a compact set, are obtained using the harmonic measures.
We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set (resp. ), then (f,g) is bijective.
This paper establishes a hypersurface defect relation, that is, , for a family of meromorphic maps from a generalized p-parabolic manifold M to the projective space ℙⁿ, under some weak non-degeneracy assumptions.
We show that the symmetrized bidisc 𝔾₂ = {(λ₁+λ₂,λ₁λ₂):|λ₁|,|λ₂| < 1} ⊂ ℂ² cannot be exhausted by domains biholomorphic to convex domains.