Displaying 921 – 940 of 5576

Showing per page

Comparaison des formes de Seifert et des fonctions zêta de Denef-Loeser des germes de courbe plane à singularité isolée

Philippe du Bois (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous démontrons que la donnée de la forme de Seifert entière et de la fonction zêta de Denef-Loeser d’un germe de courbe plane à singularité isolée ne déterminent pas le type topologique de ce germe. De plus, la fonction zêta de Denef-Loeser d’un tel germe ne détermine pas la forme de Seifert entière associée.

Complements of analytic subvarieties and q-complete spaces

Edoardo Ballico (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che il complementare X Y di un sottospazio analitico chiuso localmente intersezione completa di codimensione q di una varietà di Stein è q -completo.

Complete Pick positivity and unitary invariance

Angshuman Bhattacharya, Tirthankar Bhattacharyya (2010)

Studia Mathematica

The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foiaş. Just as a contraction is related to the Szegö kernel k S ( z , w ) = ( 1 - z w ̅ ) - 1 for |z|,|w| < 1, by means of ( 1 / k S ) ( T , T * ) 0 , we consider an arbitrary open connected domain Ω in ℂⁿ, a complete Pick kernel k on Ω and a tuple T = (T₁, ..., Tₙ) of commuting bounded operators on a complex separable Hilbert space ℋ such that (1/k)(T,T*) ≥ 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful...

Complete pluripolar curves and graphs

Tomas Edlund (2004)

Annales Polonici Mathematici

It is shown that there exist C functions on the boundary of the unit disk whose graphs are complete pluripolar. Moreover, for any natural number k, such functions are dense in the space of C k functions on the boundary of the unit disk. We show that this result implies that the complete pluripolar closed C curves are dense in the space of closed C k curves in ℂⁿ. We also show that on each closed subset of the complex plane there is a continuous function whose graph is complete pluripolar.

Complete pluripolar graphs in N

Nguyen Quang Dieu, Phung Van Manh (2014)

Annales Polonici Mathematici

Let F be the Cartesian product of N closed sets in ℂ. We prove that there exists a function g which is continuous on F and holomorphic on the interior of F such that Γ g ( F ) : = ( z , g ( z ) ) : z F is complete pluripolar in N + 1 . Using this result, we show that if D is an analytic polyhedron then there exists a bounded holomorphic function g such that Γ g ( D ) is complete pluripolar in N + 1 . These results are high-dimensional analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann. Polon. Math. 84 (2004), 75-86]...

Completeness of the Bergman metric on non-smooth pseudoconvex domains

Bo-Yong Chen (1999)

Annales Polonici Mathematici

We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in n are Bergman comlete.

Completeness of the inner kth Reiffen pseudometric

Paweł Zapałowski (2002)

Annales Polonici Mathematici

We give an example of a Zalcman-type domain in ℂ which is complete with respect to the integrated form of the (k+1)st Reiffen pseudometric, but not complete with respect to the kth one.

Currently displaying 921 – 940 of 5576