Displaying 181 – 200 of 1228

Showing per page

A modified van der Pol equation with delay in a description of the heart action

Beata Zduniak, Marek Bodnar, Urszula Foryś (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. Usage...

A modified version of explicit Runge-Kutta methods for energy-preserving

Guang-Da Hu (2014)

Kybernetika

In this paper, Runge-Kutta methods are discussed for numerical solutions of conservative systems. For the energy of conservative systems being as close to the initial energy as possible, a modified version of explicit Runge-Kutta methods is presented. The order of the modified Runge-Kutta method is the same as the standard Runge-Kutta method, but it is superior in energy-preserving to the standard one. Comparing the modified Runge-Kutta method with the standard Runge-Kutta method, numerical experiments...

A new application of the homotopy analysis method in solving the fractional Volterra's population system

Mehdi Ghasemi, Mojtaba Fardi, Reza Khoshsiar Ghaziani (2014)

Applications of Mathematics

This paper considers a Volterra's population system of fractional order and describes a bi-parametric homotopy analysis method for solving this system. The homotopy method offers a possibility to increase the convergence region of the series solution. Two examples are presented to illustrate the convergence and accuracy of the method to the solution. Further, we define the averaged residual error to show that the obtained results have reasonable accuracy.

A new approach for solving nonlinear BVP's on the half-line for second order equations and applications

Serena Matucci (2015)

Mathematica Bohemica

We present a new approach to solving boundary value problems on noncompact intervals for second order differential equations in case of nonlocal conditions. Then we apply it to some problems in which an initial condition, an asymptotic condition and a global condition is present. The abstract method is based on the solvability of two auxiliary boundary value problems on compact and on noncompact intervals, and uses some continuity arguments and analysis in the phase space. As shown in the applications,...

Currently displaying 181 – 200 of 1228