The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 201 – 220 of 1233

Showing per page

A new characteristic property of Mittag-Leffler functions and fractional cosine functions

Zhan-Dong Mei, Ji-Gen Peng, Jun-Xiong Jia (2014)

Studia Mathematica

A new characteristic property of the Mittag-Leffler function E α ( a t α ) with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.

A new continuous dependence result for impulsive retarded functional differential equations

Márcia Federson, Jaqueline Godoy Mesquita (2016)

Czechoslovak Mathematical Journal

We consider a large class of impulsive retarded functional differential equations (IRFDEs) and prove a result concerning uniqueness of solutions of impulsive FDEs. Also, we present a new result on continuous dependence of solutions on parameters for this class of equations. More precisely, we consider a sequence of initial value problems for impulsive RFDEs in the above setting, with convergent right-hand sides, convergent impulse operators and uniformly convergent initial data. We assume that the...

A new look at an old comparison theorem

Jaroslav Jaroš (2021)

Archivum Mathematicum

We present an integral comparison theorem which guarantees the global existence of a solution of the generalized Riccati equation on the given interval [ a , b ) when it is known that certain majorant Riccati equation has a global solution on [ a , b ) .

A new method of proof of Filippov’s theorem based on the viability theorem

Sławomir Plaskacz, Magdalena Wiśniewska (2012)

Open Mathematics

Filippov’s theorem implies that, given an absolutely continuous function y: [t 0; T] → ℝd and a set-valued map F(t, x) measurable in t and l(t)-Lipschitz in x, for any initial condition x 0, there exists a solution x(·) to the differential inclusion x′(t) ∈ F(t, x(t)) starting from x 0 at the time t 0 and satisfying the estimation x ( t ) - y ( t ) r ( t ) = x 0 - y ( t 0 ) e t 0 t l ( s ) d s + t 0 t γ ( s ) e s t l ( τ ) d τ d s , where the function γ(·) is the estimation of dist(y′(t), F(t, y(t))) ≤ γ(t). Setting P(t) = x ∈ ℝn: |x −y(t)| ≤ r(t), we may formulate the conclusion in Filippov’s theorem...

A new model to describe the response of a class of seemingly viscoplastic materials

Sai Manikiran Garimella, Mohan Anand, Kumbakonam R. Rajagopal (2022)

Applications of Mathematics

A new model is proposed to mimic the response of a class of seemingly viscoplastic materials. Using the proposed model, the steady, fully developed flow of the fluid is studied in a cylindrical pipe. The semi-inverse approach is applied to obtain an analytical solution for the velocity profile. The model is used to fit the shear-stress data of several supposedly viscoplastic materials reported in the literature. A numerical procedure is developed to solve the governing ODE and the procedure is validated...

A new proof of multisummability of formal solutions of non linear meromorphic differential equations

Jean-Pierre Ramis, Yasutaka Sibuya (1994)

Annales de l'institut Fourier

We give a new proof of multisummability of formal power series solutions of a non linear meromorphic differential equation. We use the recent Malgrange-Ramis definition of multisummability. The first proof of the main result is due to B. Braaksma. Our method of proof is very different: Braaksma used Écalle definition of multisummability and Laplace transform. Starting from a preliminary normal form of the differential equation x d y d x = G 0 ( x ) + λ ( x ) + A 0 y + x μ G ( x , y ) , the idea of our proof is to interpret a formal power series solution...

Currently displaying 201 – 220 of 1233