Galerkin-wavelet methods for two-point boundary value problems.
We establish some new results about the Γ-limit, with respect to the L1-topology, of two different (but related) phase-field approximations ℰ ε ε , x10ff65; ℰ ε ε of the so-called Euler’s Elastica Bending Energy for curves in the plane. In particular we characterize theΓ-limit as ε → 0 of ℰε, and show that in general the Γ-limits of ℰεand x10ff65; ℰ ε do not coincide on indicator functions of sets with non-smooth boundary. More precisely we show that the domain of theΓ-limit of x10ff65;...
We consider the Gaudin model associated to a point z ∈ ℂⁿ with pairwise distinct coordinates and to the subspace of singular vectors of a given weight in the tensor product of irreducible finite-dimensional sl₂-representations, [G]. The Bethe equations of this model provide the critical point system of a remarkable rational symmetric function. Any critical orbit determines a common eigenvector of the Gaudin hamiltonians called a Bethe vector. In [ReV], it was shown that for generic...
We associate to any convenient nondegenerate Laurent polynomial on the complex torus a canonical Frobenius-Saito structure on the base space of its universal unfolding. According to the method of K. Saito (primitive forms) and of M. Saito (good basis of the Gauss-Manin system), the main problem, which is solved in this article, is the analysis of the Gauss-Manin system of (or its universal unfolding) and of the corresponding Hodge theory.
New general unique solvability conditions of the Cauchy problem for systems of general linear functional differential equations are established. The class of equations considered covers, in particular, linear equations with transformed argument, integro-differential equations, neutral type equations and their systems of an arbitrary order.
Conditions on the unique solvability of linear fractional functional differential equations are established. A pantograph-type model from electrodynamics is studied.