The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 401 – 420 of 579

Showing per page

Positive solutions of a fourth-order differential equation with integral boundary conditions

Seshadev Padhi, John R. Graef (2023)

Mathematica Bohemica

We study the existence of positive solutions to the fourth-order two-point boundary value problem u ' ' ' ' ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ' ( 0 ) = u ' ( 1 ) = u ' ' ( 0 ) = 0 , u ( 0 ) = α [ u ] , where α [ u ] = 0 1 u ( t ) d A ( t ) is a Riemann-Stieltjes integral with A 0 being a nondecreasing function of bounded variation and f 𝒞 ( [ 0 , 1 ] × + , + ) . The sufficient conditions obtained are new and easy to apply. Their approach is based on Krasnoselskii’s fixed point theorem and the Avery-Peterson fixed point theorem.

Currently displaying 401 – 420 of 579