The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 4481 –
4500 of
9351
In this paper we study different algorithms for backward
stochastic differential equations (BSDE in short) basing on random
walk framework for 1-dimensional Brownian motion. Implicit and
explicit schemes for both BSDE and reflected BSDE are introduced.
Then we prove the convergence of different algorithms and present
simulation results for different types of BSDEs.
Using Burgers’ equation with mixed Neumann–Dirichlet boundary conditions, we highlight a problem that can arise in the numerical approximation of nonlinear dynamical systems on computers with a finite precision floating point number system. We describe the dynamical system generated by Burgers’ equation with mixed boundary conditions, summarize some of its properties and analyze the equilibrium states for finite dimensional dynamical systems that are generated by numerical approximations of this...
In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large are large nonlinear exponents . In a second part, we compute...
In this paper, we present numerical methods
for the determination of solitons, that consist in spatially localized
stationary states of nonlinear scalar equations or coupled systems
arising in nonlinear optics.
We first use the well-known shooting method in order to find
excited states (characterized by the number k of nodes) for the
classical nonlinear Schrödinger equation. Asymptotics can then
be derived in the limits of either large k are large nonlinear
exponents σ.
In a second part, we compute...
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
In this article, we show the convergence of a class of numerical schemes for certain
maximal monotone evolution systems; a by-product of this results
is the existence of solutions in cases which had not been previously
treated. The order of these schemes is 1/2 in general and 1
when the only non Lipschitz continuous term is the subdifferential
of the indicatrix of a closed convex set. In the case of Prandtl's
rheological model, our estimates in maximum norm do not depend
on spatial dimension.
...
We define approximation schemes for generalized backward stochastic differential systems, considered in the Markovian framework. More precisely, we propose a mixed approximation scheme for the following backward stochastic variational inequality:
where ∂φ is the subdifferential operator of a convex lower semicontinuous function φ and (X t)t∈[0;T] is the unique solution of a forward stochastic differential equation. We use an Euler type scheme for the system of decoupled forward-backward variational...
Currently displaying 4481 –
4500 of
9351