The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4481 – 4500 of 9351

Showing per page

Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: Convergence and simulations***

Shige Peng, Mingyu Xu (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study different algorithms for backward stochastic differential equations (BSDE in short) basing on random walk framework for 1-dimensional Brownian motion. Implicit and explicit schemes for both BSDE and reflected BSDE are introduced. Then we prove the convergence of different algorithms and present simulation results for different types of BSDEs.

Numerical Approximations of the Dynamical System Generated by Burgers’ Equation with Neumann–Dirichlet Boundary Conditions

Edward J. Allen, John A. Burns, David S. Gilliam (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using Burgers’ equation with mixed Neumann–Dirichlet boundary conditions, we highlight a problem that can arise in the numerical approximation of nonlinear dynamical systems on computers with a finite precision floating point number system. We describe the dynamical system generated by Burgers’ equation with mixed boundary conditions, summarize some of its properties and analyze the equilibrium states for finite dimensional dynamical systems that are generated by numerical approximations of this...

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Numerical computation of solitons for optical systems

Laurent Di Menza (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ. In a second part, we compute...

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1 / 2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl's rheological model, our estimates in maximum norm do not depend on spatial dimension. ...

Numerical schemes for multivalued backward stochastic differential systems

Lucian Maticiuc, Eduard Rotenstein (2012)

Open Mathematics

We define approximation schemes for generalized backward stochastic differential systems, considered in the Markovian framework. More precisely, we propose a mixed approximation scheme for the following backward stochastic variational inequality: d Y t + F ( t , X t , Y t , Z t ) d t φ ( Y t ) d t + Z t d W t , where ∂φ is the subdifferential operator of a convex lower semicontinuous function φ and (X t)t∈[0;T] is the unique solution of a forward stochastic differential equation. We use an Euler type scheme for the system of decoupled forward-backward variational...

Currently displaying 4481 – 4500 of 9351