Displaying 461 – 480 of 579

Showing per page

Positive solutions to nonlinear singular second order boundary value problems

Gabriele Bonanno (1996)

Annales Polonici Mathematici

Existence theorems of positive solutions to a class of singular second order boundary value problems of the form y'' + f(x,y,y') = 0, 0 < x < 1, are established. It is not required that the function (x,y,z) → f(x,y,z) be nonincreasing in y and/or z, as is generally assumed. However, when (x,y,z) → f(x,y,z) is nonincreasing in y and z, some of O'Regan's results [J. Differential Equations 84 (1990), 228-251] are improved. The proofs of the main theorems are based on a fixed point theorem for...

Positive solutions with given slope of a nonlocal second order boundary value problem with sign changing nonlinearities

P. Ch. Tsamatos (2004)

Annales Polonici Mathematici

We study a nonlocal boundary value problem for the equation x''(t) + f(t,x(t),x'(t)) = 0, t ∈ [0,1]. By applying fixed point theorems on appropriate cones, we prove that this boundary value problem admits positive solutions with slope in a given annulus. It is remarkable that we do not assume f≥0. Here the sign of the function f may change.

Positive stable realizations of fractional continuous-time linear systems

Tadeusz Kaczorek (2011)

International Journal of Applied Mathematics and Computer Science

Conditions for the existence of positive stable realizations with system Metzler matrices for fractional continuous-time linear systems are established. A procedure based on the Gilbert method for computation of positive stable realizations of proper transfer matrices is proposed. It is shown that linear minimum-phase systems with real negative poles and zeros always have positive stable realizations.

Positively homogeneous functions and the Łojasiewicz gradient inequality

Alain Haraux (2005)

Annales Polonici Mathematici

It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on N satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.

Positivity of Green's matrix of nonlocal boundary value problems

Alexander Domoshnitsky (2014)

Mathematica Bohemica

We propose an approach for studying positivity of Green’s operators of a nonlocal boundary value problem for the system of n linear functional differential equations with the boundary conditions n i x i - j = 1 n m i j x j = β i , i = 1 , , n , where n i and m i j are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, n i x i = x i ( ω ) or n i x i = x i ( 0 ) - x i ( ω ) and m i j x j = 0 ω k ( s ) x j ( s ) d s + r = 1 n i j c i j r x j ( t i j r ) can be considered. It is demonstrated that the positivity of Green’s operator of nonlocal problem follows from the positivity of Green’s operator...

Currently displaying 461 – 480 of 579