Displaying 41 – 60 of 1231

Showing per page

A constructive method for solving stabilization problems

Vadim Azhmyakov (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The problem of asymptotic stabilization for a class of differential inclusions is considered. The problem of choosing the Lyapunov functions from the parametric class of polynomials for differential inclusions is reduced to that of searching saddle points of a suitable function. A numerical algorithm is used for this purpose. All the results thus obtained can be extended to cover the discrete systems described by difference inclusions.

A continuation method for motion-planning problems

Yacine Chitour (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...

A continuation method for motion-planning problems

Yacine Chitour (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...

A contribution to Runge-Kutta formulas of the 7th order with rational coefficients for systems of differential equations of the first order

Anton Huťa, Vladimír Penjak (1984)

Aplikace matematiky

The purpose of this article is to find the 7th order formulas with rational parameters. The formulas are of the 11th stage. If we compare the coefficients of the development i = 1 h i i ! d i - 1 d x i - 1 𝐟 x , 𝐲 ( x ) up to h 7 with the development given by successive insertion into the formula h . f i ( k 0 , k 1 , ... , k i - 1 ) for i = 1 , 2 , ... , 10 and k = i = 0 10 p i , k i we obtain a system of 59 condition equations with 65 unknowns (except, the 1st one, all equations are nonlinear). As the solution of this system we get the parameters of the 7th order Runge-Kutta formulas as rational numbers.

A criterion for convergence of solutions of homogeneous delay linear differential equations

Josef Diblík (1999)

Annales Polonici Mathematici

The linear homogeneous differential equation with variable delays ( t ) = j = 1 n α j ( t ) [ y ( t ) - y ( t - τ j ( t ) ) ] is considered, where α j C ( I , ͞ ͞ ) , I = [t₀,∞), ℝ⁺ = (0,∞), j = 1 n α j ( t ) > 0 on I, τ j C ( I , ) , the functions t - τ j ( t ) , j=1,...,n, are increasing and the delays τ j are bounded. A criterion and some sufficient conditions for convergence of all solutions of this equation are proved. The related problem of nonconvergence is also discussed. Some comparisons to known results are given.

Currently displaying 41 – 60 of 1231