Forced oscillation of second order nonlinear dynamic equations on time scales.
Consider the third order nonlinear dynamic equation , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation , where α ≥ -1, γ > 0, c > 3, is oscillatory.
Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the -situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.
In the first part, we investigate the singular BVP , u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems , u(0) = A, u(1) = B, where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying...