The existence of positive solution to a nonlinear fractional differential equation with integral boundary conditions.
We consider a boundary value problem for a differential equation with deviating arguments and p-Laplacian: , x’(t), x’(τ(t))) = 0, t ∈ [0,1]; t ≤ 0; , t ≥ 1. An existence result is obtained with the help of the Leray-Schauder degree theory, with no restriction on the damping forces d/dt grad F(x).
The algorithm of the successive derivatives introduced in [5] was implemented in [7], [8]. This algorithm is based on the existence of a decomposition of 1-forms associated to the relative cohomology of the Hamiltonian function which is perturbed. We explain here how the first step of this algorithm gives also the first derivative of the period function. This includes, for instance, new presentations of formulas obtained by Carmen Chicone and Marc Jacobs in [3].
The properties of solutions of the nonlinear differential equation in a Banach space and of the special case of the homogeneous linear differential equation are studied. Theorems and conditions guaranteeing boundedness of the solution of the nonlinear equation are given on the assumption that the solutions of the linear homogeneous equation have certain properties.
This paper is devoted to considering the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation where ,
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.