Displaying 121 – 140 of 394

Showing per page

Comparison theorems for functional differential equations

Jozef Džurina (1994)

Mathematica Bohemica

In this paper the oscillatory and asymptotic properties of the solutions of the functional differential equation L n u ( t ) + p ( t ) f ( u [ g ( t ) ] ) = 0 are compared with those of the functional differential equation α n u ( t ) + q ( t ) h ( u [ w ( t ) ] ) = 0 .

Comparison theorems for noncanonical third order nonlinear differential equations

Ivan Mojsej, Ján Ohriska (2007)

Open Mathematics

The aim of our paper is to study oscillatory and asymptotic properties of solutions of nonlinear differential equations of the third order with quasiderivatives. We prove comparison theorems on property A between linear and nonlinear equations. Some integral criteria ensuring property A for nonlinear equations are also given. Our assumptions on the nonlinearity of f are restricted to its behavior only in a neighborhood of zero and a neighborhood of infinity.

Comparison theorems for the third order trinomial differential equations with delay argument

Jozef Džurina, Renáta Kotorová (2009)

Czechoslovak Mathematical Journal

In this paper we study asymptotic properties of the third order trinomial delay differential equation y ' ' ' ( t ) - p ( t ) y ' ( t ) + g ( t ) y ( τ ( t ) ) = 0 by transforming this equation to the binomial canonical equation. The results obtained essentially improve known results in the literature. On the other hand, the set of comparison principles obtained permits to extend immediately asymptotic criteria from ordinary to delay equations.

Compartmental Models of Migratory Dynamics

J. Knisley, T. Schmickl, I. Karsai (2011)

Mathematical Modelling of Natural Phenomena

Compartmentalization is a general principle in biological systems which is observable on all size scales, ranging from organelles inside of cells, cells in histology, and up to the level of groups, herds, swarms, meta-populations, and populations. Compartmental models are often used to model such phenomena, but such models can be both highly nonlinear and difficult to work with.Fortunately, there are many significant biological systems that are amenable to linear compartmental models which are often...

Complementary matrices in the inclusion principle for dynamic controllers

Lubomír Bakule, José Rodellar, Josep M. Rossell (2003)

Kybernetika

A generalized structure of complementary matrices involved in the input-state- output Inclusion Principle for linear time-invariant systems (LTI) including contractibility conditions for static state feedback controllers is well known. In this paper, it is shown how to further extend this structure in a systematic way when considering contractibility of dynamic controllers. Necessary and sufficient conditions for contractibility are proved in terms of both unstructured and block structured complementary...

Currently displaying 121 – 140 of 394