Displaying 141 – 160 of 394

Showing per page

Complex one-frequency cocycles

Artur Avila, Svetlana Jitomirskaya, Christian Sadel (2014)

Journal of the European Mathematical Society

We show that on a dense open set of analytic one-frequency complex valued cocycles in arbitrary dimension Oseledets filtration is either dominated or trivial. The underlying mechanism is different from that of the Bochi-Viana Theorem for continuous cocycles, which links non-domination with discontinuity of the Lyapunov exponent. Indeed, in our setting the Lyapunov exponents are shown to depend continuously on the cocycle, even if the initial irrational frequency is allowed to vary. On the other...

Complex Oscillation Theory of Differential Polynomials

Abdallah El Farissi, Benharrat Belaïdi (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we investigate the relationship between small functions and differential polynomials g f ( z ) = d 2 f ' ' + d 1 f ' + d 0 f , where d 0 ( z ) , d 1 ( z ) , d 2 ( z ) are entire functions that are not all equal to zero with ρ ( d j ) < 1 ( j = 0 , 1 ...

Complex Oscillations and Limit Cycles in Autonomous Two-Component Incommensurate Fractional Dynamical Systems

Datsko, Bohdan, Luchko, Yuri (2012)

Mathematica Balkanica New Series

MSC 2010: 26A33, 34D05, 37C25In the paper, long-time behavior of solutions of autonomous two-component incommensurate fractional dynamical systems with derivatives in the Caputo sense is investigated. It is shown that both the characteristic times of the systems and the orders of fractional derivatives play an important role for the instability conditions and system dynamics. For these systems, stationary solutions can be unstable for wider range of parameters compared to ones in the systems with...

Currently displaying 141 – 160 of 394