Displaying 1941 – 1960 of 9312

Showing per page

Differentiability of perturbed semigroups and delay semigroups

Charles J. K. Batty (2007)

Banach Center Publications

Suppose that A generates a C₀-semigroup T on a Banach space X. In 1953 R. S. Phillips showed that, for each bounded operator B on X, the perturbation A+B of A generates a C₀-semigroup on X, and he considered whether certain classes of semigroups are stable under such perturbations. This study was extended in 1968 by A. Pazy who identified a condition on the resolvent of A which is sufficient for the perturbed semigroups to be immediately differentiable. However, M. Renardy showed in 1995 that immediate...

Differential analogues of the Brück conjecture

Xiao-Guang Qi, Lian-Zhong Yang (2011)

Annales Polonici Mathematici

We give some growth properties for solutions of linear complex differential equations which are closely related to the Brück Conjecture. We also prove that the Brück Conjecture holds when certain proximity functions are relatively small.

Differential conditions to verify the Jacobian Conjecture

Ludwik M. Drużkowski, Halszka K. Tutaj (1992)

Annales Polonici Mathematici

Let F be a polynomial mapping of ℝ², F(O) = 0. In 1987 Meisters and Olech proved that the solution y(·) = 0 of the autonomous system of differential equations ẏ = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.

Differential equations and algebraic transcendents: french efforts at the creation of a Galois theory of differential equations 1880–1910

Tom Archibald (2011)

Revue d'histoire des mathématiques

A “Galois theory” of differential equations was first proposed by Émile Picard in 1883. Picard, then a young mathematician in the course of making his name, sought an analogue to Galois’s theory of polynomial equations for linear differential equations with rational coefficients. His main results were limited by unnecessary hypotheses, as was shown in 1892 by his student Ernest Vessiot, who both improved Picard’s results and altered his approach, leading Picard to assert that his lay closest to...

Differential equations at resonance

Donal O'Regan (1995)

Commentationes Mathematicae Universitatis Carolinae

New existence results are presented for the two point singular “resonant” boundary value problem 1 p ( p y ' ) ' + r y + λ m q y = f ( t , y , p y ' ) a.eȯn [ 0 , 1 ] with y satisfying Sturm Liouville or Periodic boundary conditions. Here λ m is the ( m + 1 ) s t eigenvalue of 1 p q [ ( p u ' ) ' + r p u ] + λ u = 0 a.eȯn [ 0 , 1 ] with u satisfying Sturm Liouville or Periodic boundary data.

Differential equations driven by rough signals.

Terry J. Lyons (1998)

Revista Matemática Iberoamericana

This paper aims to provide a systematic approach to the treatment of differential equations of the typedyt = Σi fi(yt) dxti where the driving signal xt is a rough path. Such equations are very common and occur particularly frequently in probability where the driving signal might be a vector valued Brownian motion, semi-martingale or similar process.However, our approach is deterministic, is totally independent of probability and permits much rougher paths than the Brownian paths usually discussed....

Differential Equations in Abstract Cones

Jankowski, Tadeusz (2000)

Serdica Mathematical Journal

We extend the method of quasilinearization to differential equations in abstract normal cones. Under some assumptions, corresponding monotone iterations converge to the unique solution of our problem and this convergence is superlinear or semi–superlinear

Differential equations in banach space and henstock-kurzweil integrals

Ireneusz Kubiaczyk, Aneta Sikorska (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, using the properties of the Henstock-Kurzweil integral and corresponding theorems, we prove the existence theorem for the equation x' = f(t,x) and inclusion x' ∈ F(t,x) in a Banach space, where f is Henstock-Kurzweil integrable and satisfies some conditions.

Differential equations in metric spaces

Jacek Tabor (2002)

Mathematica Bohemica

We give a meaning to derivative of a function u X , where X is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space 𝒯 x X of x X . Let u , v [ 0 , 1 ) X , u ( 0 ) = v ( 0 ) be continuous at zero. Then by the definition u and v are in the same equivalence class if they are tangent at zero, that is if lim h 0 + d ( u ( h ) , v ( h ) ) h = 0 . By 𝒯 x X we denote...

Differential Equations on Functions from R into Real Banach Space

Keiko Narita, Noboru Endou, Yasunari Shidama (2013)

Formalized Mathematics

In this article, we describe the differential equations on functions from R into real Banach space. The descriptions are based on the article [20]. As preliminary to the proof of these theorems, we proved some properties of differentiable functions on real normed space. For the proof we referred to descriptions and theorems in the article [21] and the article [32]. And applying the theorems of Riemann integral introduced in the article [22], we proved the ordinary differential equations on real...

Differential equations on the plane with given solutions.

R. Ramírez, N. Sadovskaia (1996)

Collectanea Mathematica

The aim of this paper is to construct the analytic vector fields with given as trajectories or solutions. In particular we construct the polynomial vector field from given conics (ellipses, hyperbola, parabola, straight lines) and determine the differential equations from a finite number of solutions.

Currently displaying 1941 – 1960 of 9312