The search session has expired. Please query the service again.
Displaying 21 –
40 of
143
We study the inverse problem of recovering Sturm-Liouville operators on the half-line with a Bessel-type singularity inside the interval from the given Weyl function. The corresponding uniqueness theorem is proved, a constructive procedure for the solution of the inverse problem is provided, also necessary and sufficient conditions for the solvability of the inverse problem are obtained.
The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter , which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries....
We present an approximation method for Picard second order boundary value problems with Carathéodory righthand side. The method is based on the idea of replacing a measurable function in the right-hand side of the problem with its Kantorovich polynomial. We will show that this approximation scheme recovers essential solutions to the original BVP. We also consider the corresponding finite dimensional problem. We suggest a suitable mapping of solutions to finite dimensional problems to piecewise constant...
We consider a fourth order eigenvalue problem containing a spectral parameter both in the equation and in the boundary condition. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in L p(0; l); p ∈ (1;∞); of the system of eigenfunctions are investigated.
We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued
Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with
one-dimensional Schrödinger operators on a compact interval [0, R] with
separated boundary conditions at 0 and R. Most of our results are
formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in
terms of the resolvent...
In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation , where and are Henstock-Kurzweil integrable functions on . Results presented in this article are generalizations of the classical results for the Lebesgue integral.
In this paper, we present the existence result for Carathéodory type solutions for the nonlinear Sturm- Liouville boundary value problem (SLBVP) in Banach spaces on an arbitrary time scale. For this purpose, we introduce an equivalent integral operator to the SLBVP by means of Green’s function on an appropriate set. By imposing the regularity conditions expressed in terms of Kuratowski measure of noncompactness, we prove the existence of the fixed points of the equivalent integral operator. Mönch’s...
Using the cone theory and the lattice structure, we establish some methods of computation of the topological degree for the nonlinear operators which are not assumed to be cone mappings. As applications, existence results of nontrivial solutions for singular Sturm-Liouville problems are given. The nonlinearity in the equations can take negative values and may be unbounded from below.
Starting from the Rodrigues representation of polynomial solutions of the general hypergeometric-type differential equation complementary polynomials are constructed using a natural method. Among the key results is a generating function in closed form leading to short and transparent derivations of recursion relations and addition theorem. The complementary polynomials satisfy a hypergeometric-type differential equation themselves, have a three-term recursion among others and obey Rodrigues formulas....
Currently displaying 21 –
40 of
143