The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Generic measures for geodesic flows on nonpositively curved manifolds

Yves Coudène, Barbara Schapira (2014)

Journal de l’École polytechnique — Mathématiques

We study the generic invariant probability measures for the geodesic flow on connected complete nonpositively curved manifolds. Under a mild technical assumption, we prove that ergodicity is a generic property in the set of probability measures defined on the unit tangent bundle of the manifold and supported by trajectories not bounding a flat strip. This is done by showing that Dirac measures on periodic orbits are dense in that set.In the case of a compact surface, we get the following sharp result:...

Currently displaying 1 – 1 of 1

Page 1