The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
421
Herzog and Lemmert have proven that if E is a Fréchet space and T: E → E is a continuous linear operator, then solvability (in [0,1]) of the Cauchy problem ẋ = Tx, x(0) = x₀ for any x₀ ∈ E implies solvability of the problem ẋ(t) = Tx(t) + f(t,x(t)), x(0) = x₀ for any x₀ ∈ E and any continuous map f: [0,1] × E → E with relatively compact image. We prove the same theorem for a large class of locally convex spaces including:
• DFS-spaces, i.e., strong duals of Fréchet-Schwartz spaces,...
In this paper we summarize an abstract approach to inertial manifolds for nonautonomous dynamical systems. Our result on the existence of inertial manifolds requires only two geometrical assumptions, called cone invariance and squeezing property, and some additional technical assumptions like boundedness or smoothing properties. We apply this result to processes (two-parameter semiflows) generated by nonautonomous semilinear parabolic evolution equations.
The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function . The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered....
In a recent paper [9] we presented a Galerkin-type Conley index theory for certain classes of infinite-dimensional ODEs without the uniqueness property of the Cauchy problem. In this paper we show how to apply this theory to strongly indefinite elliptic systems. More specifically, we study the elliptic system
in Ω,
in Ω,
u = 0, v = 0 in ∂Ω, (A1)
on a smooth bounded domain Ω in for "-"-type Hamiltonians H of class C² satisfying subcritical growth assumptions on their first order derivatives....
In this article on quasidifferential equation with non-fixed time
of impulses we consider the continuous dependence of the solutions on the
initial conditions as well as the mappings defined by these equations. We
prove general theorems for quasidifferential equations from which follows
corresponding results for differential equations, differential inclusion and
equations with Hukuhara derivative.
Sufficient conditions for controllability of partial functional differential systems of Sobolev type in Banach spaces are established. The results are obtained using compact semigroups and the Schauder fixed point theorem. An example is provided to illustrate the results.
Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.
We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.
Currently displaying 81 –
100 of
421