The search session has expired. Please query the service again.
We study the local and global existence of mild solutions to a class of semilinear fractional Cauchy problems in the α-norm assuming that the operator in the linear part is the generator of a compact analytic C₀-semigroup. A suitable notion of mild solution for this class of problems is also introduced. The results obtained are a generalization and continuation of some recent results on this issue.
The existence of the Hopf bifurcation for parabolic functional equations with delay of maximum order in spatial derivatives is proved. An application to an integrodifferential equation with a singular kernel is given.
Viene dimostrata l’esistenza e l’unicità globale della soluzione di un’equazione funzionale in uno spazio di Hilbert e si caratterizza il generatore infinitesimale del semigruppo ad essa associato. Il risultato è applicato ad equazioni integrodifferenziali a derivate parziali di tipo parabolico in cui compaiono argomenti con ritardo (discreto e continuo) nelle derivate spaziali di ordine massimo.
Currently displaying 1 –
6 of
6