Displaying 2001 – 2020 of 2162

Showing per page

Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels

Ousseynou Nakoulima (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a distributed system in which the state q is governed by a parabolic equation and a pair of controls v = (h,k) where h and k play two different roles: the control k is of controllability type while h expresses that the state q does not move too far from a given state. Therefore, it is natural to introduce the control point of view. In fact, there are several ways to state and solve optimal control problems with a pair of controls h and k, in particular the Least Squares method...

Optimal control of a rotating body beam

Weijiu Liu (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider the problem of optimal control of the model for a rotating body beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque to suppress the vibrations of the beam. We prove that there exists at least one optimal control and derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose numerical...

Optimal Control of a Rotating Body Beam

Weijiu Liu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider the problem of optimal control of the model for a rotating body beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque to suppress the vibrations of the beam. We prove that there exists at least one optimal control and derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose ...

Optimal control of a stochastic heat equation with boundary-noise and boundary-control

Arnaud Debussche, Marco Fuhrman, Gianmario Tessitore (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We are concerned with the optimal control of a nonlinear stochastic heat equation on a bounded real interval with Neumann boundary conditions. The specificity here is that both the control and the noise act on the boundary. We start by reformulating the state equation as an infinite dimensional stochastic evolution equation. The first main result of the paper is the proof of existence and uniqueness of a mild solution for the corresponding Hamilton-Jacobi-Bellman (HJB) equation. The C1 regularity...

Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity

E. Casas, O. Kavian, J.-P. Puel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study here an optimal control problem for a semilinear elliptic equation with an exponential nonlinearity, such that we cannot expect to have a solution of the state equation for any given control. We then have to speak of pairs (control, state). After having defined a suitable functional class in which we look for solutions, we prove existence of an optimal pair for a large class of cost functions using a non standard compactness argument. Then, we derive a first order optimality system assuming...

Optimal control of fluid flow in soil 1. Deterministic case.

Youcef Kelanemer (1998)

Revista Matemática Complutense

We study the numerical aspect of the optimal control of problems governed by a linear elliptic partial differential equation (PDE). We consider here the gas flow in porous media. The observed variable is the flow field we want to maximize in a given part of the domain or its boundary. The control variable is the pressure at one part of the boundary or the discharges of some wells located in the interior of the domain. The objective functional is a balance between the norm of the flux in the observation...

Optimal control of linearized compressible Navier–Stokes equations

Shirshendu Chowdhury, Mythily Ramaswamy (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study an optimal boundary control problem for the two dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle. The control acts through the Dirichlet boundary condition. We first establish the existence and uniqueness of the solution for the two-dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle with inhomogeneous Dirichlet boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal solution over...

Optimal control of nonlinear evolution equations associated with time-dependent subdifferentials and applications

Noriaki Yamazaki (2009)

Banach Center Publications

In this paper we consider optimal control problems for abstract nonlinear evolution equations associated with time-dependent subdifferentials in a real Hilbert space. We prove the existence of an optimal control that minimizes the nonlinear cost functional. Also, we study approximating control problems of our equations. Then, we show the relationship between the original optimal control problem and the approximating ones. Moreover, we give some applications of our abstract results.

Optimal control of nonlinear one-dimensional periodic wave equation with x-dependent coefficients

Hengyan Li, Shuguan Ji (2011)

Open Mathematics

This paper is concerned with an optimal control problem governed by the nonlinear one dimensional periodic wave equation with x-dependent coefficients. The control of the system is realized via the outer function of the state. Such a model arises from the propagation of seismic waves in a nonisotropic medium. By investigating some important properties of the linear operator associated with the state equation, we obtain the existence and regularity of the weak solution to the state equation. Furthermore,...

Currently displaying 2001 – 2020 of 2162