Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem
We prove the existence of positive and of nodal solutions for , , where and , for a class of open subsets of lying between two infinite cylinders.
We prove the existence of positive and of nodal solutions for -Δu = |u|p-2u + µ|u|q-2u, , where µ > 0 and 2 < q < p = 2N(N - 2) , for a class of open subsets Ω of lying between two infinite cylinders.
Signals generated in circuits that include nano-structured elements typically have strongly distinct characteristics, particularly the hysteretic distortion. This is due to memristance, which is one of the key electronic properties of nanostructured materials. In this article, we consider signals generated from a memrsitive circuit model. We demonstrate numerically that such signals can be efficiently represented in certain custom-designed nonorthogonal bases. The proposed method ensures that the...
In this paper we show some results of multiplicity and existence of sign-changing solutions using a mountain pass theorem in ordered intervals, for a class of quasi-linear elliptic Dirichlet problems. As a by product we construct a special pseudo-gradient vector field and a negative pseudo-gradient flow for the nondifferentiable functional associated to our class of problems.
The blow-up of solutions to a quasilinear heat equation is studied using a similarity transformation that turns the equation into a nonlocal equation whose steady solutions are stable. This allows energy methods to be used, instead of the comparison principles used previously. Among the questions discussed are the time and location of blow-up of perturbations of the steady blow-up profile.
Nella prima parte di questa Nota si dimostrano dei risultati di simmetria unidimensionale e radiale per le soluzioni di in . Questi risultati sono legati a due congetture (De Giorgi, 1978 e Gibbons, 1994) riguardanti la classificazione delle soluzioni dell’equazione in . Si dimostra, in particolare, la seguente generalizzazione della congettura di Gibbons: se e se l’insieme degli zeri di è limitato nella direzione , allora , ovvero, è unidimensionale. Nella seconda parte si considerano...
We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods.
When analysing general systems of PDEs, it is important first to find the involutive form of the initial system. This is because the properties of the system cannot in general be determined if the system is not involutive. We show that the notion of involutivity is also interesting from the numerical point of view. The use of the involutive form of the system allows one to consider quite general situations in a unified way. We illustrate our approach on the numerical solution of several flow equations...
When analysing general systems of PDEs, it is important first to find the involutive form of the initial system. This is because the properties of the system cannot in general be determined if the system is not involutive. We show that the notion of involutivity is also interesting from the numerical point of view. The use of the involutive form of the system allows one to consider quite general situations in a unified way. We illustrate our approach on the numerical solution of several flow equations...
Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.
Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.
We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.