Solution généralisée locale d'une équation parabolique quasi linéaire dégénérée du second ordre
A mathematical model of a fluid flow in a single-piston pump is formulated and solved. Variation of pressure and rate of flow in suction and delivery piping respectively is described by linearized Euler equations for barotropic fluid. A new phenomenon is introduced by a boundary condition with discontinuous coefficient describing function of a valve. The system of Euler equations is converted to a second order equation in the space where is length of the pipe. The existence, unicity and stability...
In this paper a mathematical model of a fluid flow in a tube with a valve and a pump is solved. The function of the valve is described in more detail than in [3], thus making the model more complete.
Degenerate parabolic variational inequalities with convection are solved by means of a combined relaxation method and method of characteristics. The mathematical problem is motivated by Richard’s equation, modelling the unsaturated – saturated flow in porous media. By means of the relaxation method we control the degeneracy. The dominance of the convection is controlled by the method of characteristics.
Degenerate parabolic variational inequalities with convection are solved by means of a combined relaxation method and method of characteristics. The mathematical problem is motivated by Richard's equation, modelling the unsaturated – saturated flow in porous media. By means of the relaxation method we control the degeneracy. The dominance of the convection is controlled by the method of characteristics.
The author solves a mixed boundary value problem for linear partial differential equations of the elliptic type in a multiply connected domain. Dirichlet conditions are given on the components of the boundary of the domain up to some additive constants which are not known a priori. These constants are to be determined, together with the solution of the boundary value problem, to fulfil some additional conditions. The results are immediately applicable in hydrodynamics to the solution of problems...