Displaying 441 – 460 of 1682

Showing per page

Solution of Space-Time Fractional Schrödinger Equation Occurring in Quantum Mechanics

Saxena, R., Saxena, Ravi, Kalla, S. (2010)

Fractional Calculus and Applied Analysis

Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.The object of this article is to present the computational solution of one-dimensional space-time fractional Schrödinger equation occurring in quantum mechanics. The method followed in deriving the solution is that of joint Laplace and Fourier transforms. The solution is derived in a closed and computational form in terms of the H-function. It provides an elegant...

Solution of the Dirichlet problem for the Laplace equation

Dagmar Medková (1999)

Applications of Mathematics

For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.

Solution of the Neumann problem for the Laplace equation

Dagmar Medková (1998)

Czechoslovak Mathematical Journal

For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.

Solution of the Robin problem for the Laplace equation

Dagmar Medková (1998)

Applications of Mathematics

For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.

Solution operators for convolution equations on the germs of analytic functions on compact convex sets in N

S. Melikhov, Siegfried Momm (1995)

Studia Mathematica

G N is compact and convex it is known for a long time that the nonzero constant coefficients linear partial differential operators (of finite or infinite order) are surjective on the space of all analytic functions on G. We consider the question whether solutions of the inhomogeneous equation can be given in terms of a continuous linear operator. For instance we characterize those sets G for which this is always the case.

Currently displaying 441 – 460 of 1682