A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics
We study solutions to a nonlinear parabolic convection-diffusion equation on the half-line with the Neumann condition at x=0. The analysis is based on the properties of self-similar solutions to that problem.
We discuss the existence of almost everywhere solutions of nonlinear PDE’s of first (in the scalar and vectorial cases) and second order.
A family of nonlinear conservative finite difference schemes for the multidimensional Boussinesq Paradigm Equation is considered. A second order of convergence and a preservation of the discrete energy for this approach are proved. Existence and boundedness of the discrete solution on an appropriate time interval are established. The schemes have been numerically tested on the models of the propagation of a soliton and the interaction of two solitons. The numerical experiments demonstrate that the...
In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Sér. I325 (1997) 1211–1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains,...
Finite element methods with piecewise polynomial spaces in space for solving the nonstationary heat equation, as a model for parabolic equations are considered. The discretization in time is performed using the Crank-Nicolson method. A new a priori estimate is proved. Thanks to this new a priori estimate, a new error estimate in the discrete norm of is proved. An -error estimate is also shown. These error estimates are useful since they allow us to get second order time accurate approximations...