Displaying 41 – 60 of 405

Showing per page

Decay rates of Volterra equations on ℝN

Monica Conti, Stefania Gatti, Vittorino Pata (2007)

Open Mathematics

This note is concerned with the linear Volterra equation of hyperbolic type t t u ( t ) - α Δ u ( t ) + 0 t μ ( s ) Δ u ( t - s ) d s = 0 on the whole space ℝN. New results concerning the decay of the associated energy as time goes to infinity were established.

Decaying positive solutions of some quasilinear differential equations

Tadie (1998)

Commentationes Mathematicae Universitatis Carolinae

The existence of decaying positive solutions in + of the equations ( E λ ) and ( E λ 1 ) displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. t 1 - p F ( r , t U , t | U ' | ) 0 as t ), a super-sub-solutions method (see § 2.2) enables us to obtain existence theorems for more general cases.

Decomposition and Moser's lemma.

David E. Edmunds, Miroslav Krbec (2002)

Revista Matemática Complutense

Using the idea of the optimal decomposition developed in recent papers (Edmunds-Krbec, 2000) and in Cruz-Uribe-Krbec we study the boundedness of the operator Tg(x) = ∫x1 g(u)du / u, x ∈ (0,1), and its logarithmic variant between Lorentz spaces and exponential Orlicz and Lorentz-Orlicz spaces. These operators are naturally linked with Moser's lemma, O'Neil's convolution inequality, and estimates for functions with prescribed rearrangement. We give sufficient conditions for and very simple proofs...

Décomposition formelle d'un système microdifférentiel aux points génériques

Rui Rodrigues (1992)

Annales de l'institut Fourier

Soit X une variété analytique complexe et T * X X son fibre cotangent. Soit M un module cohérent sur l’anneau des opérateurs microdifférentiels formels sur X . Dans le cas ou le support (ou variété caractéristique) de M est une hypersurface, B. Malgrange a démontre que M se décompose en systèmes élémentaires au point générique et après tensorisation par l’anneau des opérateurs microdifférentiels d’ordre q - fractionnaire avec q approprie.Dans ce travail, on généralise le résultat cité : d’abord pour un...

Deep learning for gradient flows using the Brezis–Ekeland principle

Laura Carini, Max Jensen, Robert Nürnberg (2023)

Archivum Mathematicum

We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis–Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven.

Currently displaying 41 – 60 of 405