Puits de potentiel généralisés et asymptotique semi-classique
We study the 2D magnetohydrodynamic (MHD) equations for a viscous incompressible resistive fluid, a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the magnetic fields, in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality with a large class of non-autonomous external forces. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal...
Using the asymptotic a priori estimate method, we prove the existence of pullback attractors for nonautonomous quasilinear degenerate parabolic equations involving weighted p-Laplacian operators in bounded domains, without restriction on the growth order of the polynomial type nonlinearity and on the exponential growth of the external force. The results obtained improve some recent ones for nonautonomous reaction-diffusion equations. Moreover, a relationship between pullback attractors and uniform...