Displaying 981 – 1000 of 1318

Showing per page

Existence of regular time-periodic solutions for a class of non-Newtonian double-diffusive convection system

Qiong Wu, Changjia Wang (2025)

Applications of Mathematics

We investigate a system of partial differential equations that models the motion of an incompressible double-diffusion convection fluid. The additional stress tensor is generated by a potential with p -structure. In a three-dimensional periodic setting and p [ 5 3 , 2 ) , we employ a regularized approximation scheme in conjunction with the Galerkin method to establish the existence of regular solutions, provided that the forcing term is properly small. Furthermore, we demonstrate the existence of periodic regular...

Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities

Y. Akdim, J. Bennouna, M. Mekkour, H. Redwane (2012)

Applicationes Mathematicae

We study the problem ∂b(x,u)/∂t - div(a(x,t,u,Du)) + H(x,t,u,Du) = μ in Q = Ω×(0,T), b ( x , u ) | t = 0 = b ( x , u ) in Ω, u = 0 in ∂Ω × (0,T). The main contribution of our work is to prove the existence of a renormalized solution without the sign condition or the coercivity condition on H(x,t,u,Du). The critical growth condition on H is only with respect to Du and not with respect to u. The datum μ is assumed to be in L ¹ ( Q ) + L p ' ( 0 , T ; W - 1 , p ' ( Ω ) ) and b(x,u₀) ∈ L¹(Ω).

Existence of renormalized solutions for some degenerate and non-coercive elliptic equations

Youssef Akdim, Mohammed Belayachi, Hassane Hjiaj (2023)

Mathematica Bohemica

This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by t 2 - div ( b ( | u | ) | u | p - 2 u ) + d ( | u | ) | u | p = f - div ( c ( x ) | u | α ) in Ω , u = 0 on Ω , t where Ω is a bounded open set of N ( N 2 ) with 1 < p < N and f L 1 ( Ω ) , under some growth conditions on the function b ( · ) and d ( · ) , where c ( · ) is assumed to be in L N ( p - 1 ) ( Ω ) . We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.

Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems

Youssef Akdim, Elhoussine Azroul, Abdelmoujib Benkirane (2003)

Annales mathématiques Blaise Pascal

An existence theorem is proved, for a quasilinear degenerated elliptic inequality involving nonlinear operators of the form A u + g ( x , u , u ) , where A is a Leray-Lions operator from W 0 1 , p ( Ω , w ) into its dual, while g ( x , s , ξ ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s , but it satisfies a sign condition on s , the second term belongs to W - 1 , p ( Ω , w * ) .

Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type

Stanisław Brzychczy (1993)

Annales Polonici Mathematici

Consider a nonlinear differential-functional equation (1) Au + f(x,u(x),u) = 0 where A u : = i , j = 1 m a i j ( x ) ( ² u ) / ( x i x j ) , x = ( x 1 , . . . , x m ) G m , G is a bounded domain with C 2 + α (0 < α < 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real L p ( G ̅ ) function. For the equation (1) we consider the Dirichlet problem with the boundary condition (2) u(x) = h(x) for x∈ ∂G. We use Chaplygin’s method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions. Using the method of upper and lower...

Existence of solution to nonlinear boundary value problem for ordinary differential equation of the second order in Hilbert space

Eva Rovderová (1992)

Mathematica Bohemica

In this paper we deal with the boundary value problem in the Hilbert space. Existence of a solutions is proved by using the method of lower and upper solutions. It is not necessary to suppose that the homogeneous problem has only the trivial solution. We use some results from functional analysis, especially the fixed-point theorem in the Banach space with a cone (Theorem 4.1, [5]).

Existence of solutions and monotone iterative method for infinite systems of parabolic differential-functional equations

Stanisław Brzychczy (1999)

Annales Polonici Mathematici

We consider the Fourier first boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations. To prove the existence and uniqueness of solution, we apply a monotone iterative method using J. Szarski's results on differential-functional inequalities and a comparison theorem for infinite systems.

Currently displaying 981 – 1000 of 1318