Previous Page 53

Displaying 1041 – 1045 of 1045

Showing per page

Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators

Bruno Franchi, Cristian E. Gutiérrez, Richard L. Wheeden (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we prove a two-weight Sobolev-Poincaré inequality for the function spaces associated with a Grushin type operator. Conditions on the weights are formulated in terms of a strong A weight with respect to the metric associated with the operator. Roughly speaking, the strong A condition provides relationships between line and solid integrals of the weight. Then, this result is applied in order to prove Harnack's inequality for positive weak solutions of some degenerate elliptic equations....

Tykhonov well-posedness of a heat transfer problem with unilateral constraints

Mircea Sofonea, Domingo A. Tarzia (2022)

Applications of Mathematics

We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D d and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by 𝒫 . We associate to Problem 𝒫 an optimal control problem, denoted by 𝒬 . Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K ˜ , we provide results concerning the well-posedness of problems...

Currently displaying 1041 – 1045 of 1045

Previous Page 53