The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1081 – 1100 of 2283

Showing per page

A splitting theory for the space of distributions

P. Domański, D. Vogt (2000)

Studia Mathematica

The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'

A stability result in the localization of cavities in a thermic conducting medium

B. Canuto, Edi Rosset, S. Vessella (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We prove a logarithmic stability estimate for a parabolic inverse problem concerning the localization of unknown cavities in a thermic conducting medium Ω in n , n 2 , from a single pair of boundary measurements of temperature and thermal flux.

A stability result in the localization of cavities in a thermic conducting medium

B. Canuto, Edi Rosset, S. Vessella (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove a logarithmic stability estimate for a parabolic inverse problem concerning the localization of unknown cavities in a thermic conducting medium Ω in n , n ≥ 2, from a single pair of boundary measurements of temperature and thermal flux.

A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes

Malte Braack (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

It is well known that the classical local projection method as well as residual-based stabilization techniques, as for instance streamline upwind Petrov-Galerkin (SUPG), are optimal on isotropic meshes. Here we extend the local projection stabilization for the Navier-Stokes system to anisotropic quadrilateral meshes in two spatial dimensions. We describe the new method and prove an a priori error estimate. This method leads on anisotropic meshes to qualitatively better convergence behavior...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Saber Amdouni, Patrick Hild, Vanessa Lleras, Maher Moakher, Yves Renard (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to provide a priori error estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimensional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is...

Currently displaying 1081 – 1100 of 2283