On the stability of solutions of impulsive nonlinear parabolic equations
Stability and asymptotic stability of the solutions of impulsive nonlinear pa ra bo lic equations are studied via the method of differential inequalities.
Stability and asymptotic stability of the solutions of impulsive nonlinear pa ra bo lic equations are studied via the method of differential inequalities.
We consider a nonlinear differential-functional parabolic boundary initial value problem (1) ⎧A z + f(x,z(t,x),z(t,·)) - ∂z/∂t = 0 for t > 0, x ∈ G, ⎨z(t,x) = h(x) for t > 0, x ∈ ∂G, ⎩z(0,x) = φ₀(x) for x ∈ G, and the associated elliptic boundary value problem with Dirichlet condition (2) ⎧Az + f(x,z(x),z(·)) = 0 for x ∈ G, ⎨z(x) = h(x) for x ∈ ∂G ⎩ where , G is an open and bounded domain with (0 < α ≤ 1) boundary, the operator Az := ∑j,k=1m ajk(x) (∂²z/(∂xj ∂xk)) is...
We consider the coupling between three-dimensional (3D) and one-dimensional (1D) fluid-structure interaction (FSI) models describing blood flow inside compliant vessels. The 1D model is a hyperbolic system of partial differential equations. The 3D model consists of the Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall dynamics. A non standard formulation for the Navier-Stokes equations is adopted to have suitable boundary conditions for the...
Of concern in this paper is the laminated beam system with frictional damping and an internal constant delay term in the transverse displacement. Under suitable assumptions on the weight of the delay, we establish that the system's energy decays exponentially in the case of equal wave speeds of propagation, and polynomially in the case of non-equal wave speeds.
* Partially supported by CNPq (Brazil)We study the distribution of the (complex) eigenvalues for interior boundary value problems with dissipative boundary conditions in the case of C 1 -smooth boundary under some natural assumption on the behaviour of the geodesics. As a consequence we obtain energy decay estimates of the solutions of the corresponding wave equation.
For stationary kinetic equations, entropy dissipation can sometimes be used in existence proofs similarly to entropy in the time dependent situation. Recent results in this spirit obtained in collaboration with A. Nouri, are here presented for the nonlinear stationary Boltzmann equation in bounded domains of with given indata and diffuse reflection on the boundary.