Analysis of two-dimensional FETI-DP preconditioners by the standard additive Schwarz framework.
We survey analytic and geometric proofs of classical logarithmic Sobolev inequalities for Gaussian and more general strictly log-concave probability measures. Developments of the last decade link the two approaches through heat kernel and Hamilton-Jacobi equations, inequalities in convex geometry and mass transportation.
If is a polynomial in such that integrable, then the inverse Fourier transform of is a fundamental solution to the differential operator . The purpose of the article is to study the dependence of this fundamental solution on the polynomial . For it is shown that can be analytically continued to a Riemann space over the set of all polynomials of the same degree as . The singularities of this extension are studied.
We analyze the controllability of the wave equation on a cylinder when the control acts on the boundary, that does not satisfy the classical geometric control condition. We obtain precise estimates on the analyticity of reachable functions. As the control time increases, the degree of analyticity that is required for a function to be reachable decreases as an inverse power of time. We conclude that any analytic function can be reached if that control time is large enough. In the C∞ class, a...
We discuss the open problem of analytic hypoellipticity for sums of squares of vector fields, including some recent partial results and a conjecture of Treves.
Spaces with corner singularities, locally modelled by cones with base spaces having conical singularities, belong to the hierarchy of (pseudo-) manifolds with piecewise smooth geometry. We consider a typical case of a manifold with corners, the so-called "edged spindle", and a natural algebra of pseudodifferential operators on it with special degeneracy in the symbols, the "corner algebra". There are three levels of principal symbols in the corner algebra, namely the interior,...