On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients.
Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional...
In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.
Para el estudio de la naturaleza de formas críticas en optimización de formas se requieren algunas propiedades de continuidad sobre las derivadas de segundo orden de las formas. Dado que la fórmula de Taylor-Young involucra a diferentes topologías que no son equivalentes, dicha fórmula no permite deducir cuando una forma crítica es un mínimo local estricto de la función forma pese a que su Hessiano sea definido positivo en ese punto. El resultado principal de este trabajo ofrece una cota superior...
Viscous two-fluid flows arise in different kinds of coating technologies. Frequently, the corresponding mathematical models represent two-dimensional free boundary value problems for the Navier-Stokes equations or their modifications. In this review article we present some results about nonisothermal stationary as well as about isothermal evolutionary viscous flow problems. The temperature-depending problems are characterized by coupled heat- and mass transfer and also by thermocapillary convection....
In this paper we prove a regularity result for very weak solutions of equations of the type , where , grow in the gradient like and is not in divergence form. Namely we prove that a very weak solution of our equation belongs to . We also prove global higher integrability for a very weak solution for the Dirichlet problem