Approximate controllability of a hydro-elastic coupled system
We analyze the controllability of the motion of a fluid by means of the action of a vibrating shell coupled at the boundary of the fluid. The model considered is linear. We study its approximate controllability, i.e. whether the fluid may reach a dense set of final configurations at a given time. We show that this problem can be reduced to a unique continuation question for the Stokes system. We prove that this unique continuation property holds generically among analytic domains and therefore,...
In this paper we consider an approximate controllability problem for linear parabolic equations with rapidly oscillating coefficients in a periodically perforated domain. The holes are -periodic and of size . We show that, as , the approximate control and the corresponding solution converge respectively to the approximate control and to the solution of the homogenized problem. In the limit problem, the approximation of the final state is alterated by a constant which depends on the proportion...
In this paper we consider an approximate controllability problem for linear parabolic equations with rapidly oscillating coefficients in a periodically perforated domain. The holes are ε-periodic and of size ε. We show that, as ε → 0, the approximate control and the corresponding solution converge respectively to the approximate control and to the solution of the homogenized problem. In the limit problem, the approximation of the final state is alterated by a constant which depends on the proportion...
Recently, we have developed the necessary and sufficient conditions under which a rational function approximates the semigroup of operators generated by an infinitesimal operator . The present paper extends these results to an inhomogeneous equation .
The methods of arbitrarily high orders of accuracy for the solution of an abstract ordinary differential equation are studied. The right-hand side of the differential equation under investigation contains an unbounded operator which is an infinitesimal generator of a strongly continuous semigroup of operators. Necessary and sufficient conditions are found for a rational function to approximate the given semigroup with high accuracy.