The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We use DiPerna’s and Majda’s generalization of Young measures to describe oscillations and concentrations in sequences of gradients, , bounded in if and is a bounded domain with the extension property in . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of are required and links with lower semicontinuity results...
We use DiPerna's and Majda's generalization of Young measures to describe oscillations and concentrations in sequences of gradients, , bounded in
if p > 1 and is a bounded domain with the extension property in .
Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases
where no boundary conditions nor regularity of Ω are
required and links with lower semicontinuity...
It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.
In this paper we have collected some partial results on the sign of u(t,x) where u is a (sufficiently regular) solution of⎧ utt + (-1)m Δmu = 0 (t,x) ∈ R x Ω⎨⎩ u|Γ = ... = Δm-1 u|Γ = 0 t ∈ R.These results rely on the study of a sign of almost periodic functions of a special form restricted to a bounded interval J.
In this paper, sufficient conditions have been obtained for oscillation of solutions of a class of th order linear neutral delay-differential equations. Some of these results have been used to study oscillatory behaviour of solutions of a class of boundary value problems for neutral hyperbolic partial differential equations.
In this paper nonlinear hyperbolic equations of neutral type of a given form are considered, with certain boundary conditions. Under certain constraints on the coefficients of the equation and the boundary conditions, sufficient conditions for oscillation of the solutions of the problems considered are obtained.
Currently displaying 81 –
87 of
87