Displaying 81 – 100 of 277

Showing per page

Diffusion Limit of the Lorentz Model: Asymptotic Preserving Schemes

Christophe Buet, Stéphane Cordier, Brigitte Lucquin-Desreux, Simona Mancini (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...

Dynamics of Propagation Phenomena in Biological Pattern Formation

G. Liţcanu, J. J.L. Velázquez (2010)

Mathematical Modelling of Natural Phenomena

A large variety of complex spatio-temporal patterns emerge from the processes occurring in biological systems, one of them being the result of propagating phenomena. This wave-like structures can be modelled via reaction-diffusion equations. If a solution of a reaction-diffusion equation represents a travelling wave, the shape of the solution will be the same at all time and the speed of propagation of this shape will be a constant. Travelling wave solutions of reaction-diffusion systems have been...

Estimates and computations for melting and solidification problems

James M. Greenberg (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we focus on melting and solidification processes described by phase-field models and obtain rigorous estimates for such processes. These estimates are derived in Section 2 and guarantee the convergence of solutions to non-constant equilibrium patterns. The most basic results conclude with the inequality (E2.31). The estimates in the remainder of Section 2 illustrate what obtains if the initial data is progressively more regular and may be omitted on first reading. We also present some...

Estimates and Computations for Melting and Solidification Problems

James M. Greenberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we focus on melting and solidification processes described by phase-field models and obtain rigorous estimates for such processes. These estimates are derived in Section 2 and guarantee the convergence of solutions to non-constant equilibrium patterns. The most basic results conclude with the inequality (E2.31). The estimates in the remainder of Section 2 illustrate what obtains if the initial data is progressively more regular and may be omitted on first reading. We also present...

Estimates of eigenvalues and eigenfunctions in periodic homogenization

Carlos E. Kenig, Fanghua Lin, Zhongwei Shen (2013)

Journal of the European Mathematical Society

For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an O ( ϵ ) estimate in H 1 for solutions with Dirichlet condition.

Existence of pulsating waves in a model of flames in sprays

Peter Constantin, Komla Domelevo, Jean-Michel Roquejoffre, Lenya Ryzhik (2006)

Journal of the European Mathematical Society

A one-dimensional system describing the propagation of low Mach number flames in sprays is studied. We show that pulsating waves may exist when the droplet distribution in the unburnt region is spatially periodic. The range of possible propagation speeds may be either bounded or unbounded, depending on the threshold temperatures of the burning and vaporization rates.

Existence of solution to nonlinear boundary value problem for ordinary differential equation of the second order in Hilbert space

Eva Rovderová (1992)

Mathematica Bohemica

In this paper we deal with the boundary value problem in the Hilbert space. Existence of a solutions is proved by using the method of lower and upper solutions. It is not necessary to suppose that the homogeneous problem has only the trivial solution. We use some results from functional analysis, especially the fixed-point theorem in the Banach space with a cone (Theorem 4.1, [5]).

Existence of solutions to nonlinear advection-diffusion equation applied to Burgers' equation using Sinc methods

Kamel Al-Khaled (2014)

Applications of Mathematics

This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...

Focusing of spherical nonlinear pulses in R1+3. II. Nonlinear caustic.

Rémi Carles, Jeffrey Rauch (2004)

Revista Matemática Iberoamericana

We study spherical pulse like families of solutions to semilinear wave equattions in space time of dimension 1+3 as the pulses focus at a point and emerge outgoing. We emphasize the scales for which the incoming and outgoing waves behave linearly but the nonlinearity has a strong effect at the focus. The focus crossing is described by a scattering operator for the semilinear equation, which broadens the pulses. The relative errors in our approximate solutions are small in the L∞ norm.

Gaussian estimates for Schrödinger perturbations

Krzysztof Bogdan, Karol Szczypkowski (2014)

Studia Mathematica

We propose a new general method of estimating Schrödinger perturbations of transition densities using an auxiliary transition density as a majorant of the perturbation series. We present applications to Gaussian bounds by proving an optimal inequality involving four Gaussian kernels, which we call the 4G Theorem. The applications come with honest control of constants in estimates of Schrödinger perturbations of Gaussian-type heat kernels and also allow for specific non-Kato perturbations.

Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion

M. Alfaro, D. Hilhorst (2010)

Mathematical Modelling of Natural Phenomena

In this note, we consider a nonlinear diffusion equation with a bistable reaction term arising in population dynamics. Given a rather general initial data, we investigate its behavior for small times as the reaction coefficient tends to infinity: we prove a generation of interface property.

Geometric optics and instability for NLS and Davey-Stewartson models

Rémi Carles, Eric Dumas, Christof Sparber (2012)

Journal of the European Mathematical Society

We study the interaction of (slowly modulated) high frequency waves for multi-dimensional nonlinear Schrödinger equations with Gauge invariant power-law nonlinearities and nonlocal perturbations. The model includes the Davey-Stewartson system in its elliptic-elliptic and hyperbolic-elliptic variants. Our analysis reveals a new localization phenomenon for nonlocal perturbations in the high frequency regime and allows us to infer strong instability results on the Cauchy problem in negative order Sobolev...

Currently displaying 81 – 100 of 277