The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L. Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been identified...
Boundary value problems for the system of linear elasticity with rapidly alternating boundary conditions are studied and asymptotic behavior of solutions is considered when a small parameter, which defines the oscillation of the boundary conditions, tends to zero. Estimates for the difference between such solutions and solutions of the limit problem are given.
We characterize some -limits using two-scale techniques and investigate a method to detect deviations from the arithmetic mean in the obtained -limit provided no periodicity assumptions are involved. We also prove some results on the properties of generalized two-scale convergence.
In this paper the problem of homogeneization for the Laplace operator in partially perforated domains with small cavities and the Neumann boundary conditions on the boundary of cavities is studied. The corresponding spectral problem is also considered.
The limit behavior of a periodic assembly of a finite number of elasto-plastic phases is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic model, albeit with an infinite number of internal variables.
In this paper we study bounds for the off-diagonal elements of the homogenized tensor for the stationary heat conduction problem. We also state that these bounds are sharp by proving a formula for the homogenized tensor in the case of laminate structures.
In this paper we study the behavior of solutions of the boundary value problem for the Poisson equation in a partially perforated domain with arbitrary density of cavities and mixed type conditions on their boundary. The corresponding spectral problem is also considered. A short communication of similar results can be found in [1].
We recently derived a very general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction (cf. Capdeboscq and Vogelius (2003)). In this paper we show how this representation formula may be used to obtain very accurate estimates for the size of the inhomogeneities in terms of multiple boundary measurements. As demonstrated by our computational experiments, these estimates are significantly better than previously known (single...
We recently derived a very general representation formula
for the boundary voltage perturbations caused by internal
conductivity inhomogeneities of low volume fraction (
cf. Capdeboscq and Vogelius (2003)). In this paper we show how this
representation formula may be used to obtain very
accurate estimates for the size of the inhomogeneities
in terms of multiple boundary measurements. As demonstrated
by our computational experiments, these estimates are significantly
better than previously known...
Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...
Currently displaying 1 –
20 of
22