The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Remarques sur l’observabilité pour l’équation de Laplace

Kim-Dang Phung (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Nous quantifions la propriété de continuation unique pour le laplacien dans un domaine borné quand la condition aux bords est a priori inconnue. Nous établissons une estimation de dépen-dance de type logarithmique suivant la terminologie de John [5]. Les outils utilisés reposent sur les inégalités de Carleman et les techniques des travaux de Robbiano [8, 11]. Aussi, nous déterminons en application de l’inégalité d’observabilité obtenue un coût du contrôle approché pour un problème elliptique modèle....

Remarques sur l'observabilité pour l'équation de Laplace

Kim-Dang Phung (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the Laplace equation in a smooth bounded domain. We prove logarithmic estimates, in the sense of John [5] of solutions on a part of the boundary or of the domain without known boundary conditions. These results are established by employing Carleman estimates and techniques that we borrow from the works of Robbiano [8,11]. Also, we establish an estimate on the cost of an approximate control for an elliptic model equation.

Currently displaying 21 – 30 of 30

Previous Page 2